Modular arithmetic

Results: 480



#Item
281Cyclotomic fields / Algebraic number theory / Analytic number theory / Modular arithmetic / Gauss sum / Quadratic residue / Jacobi sum / Character sum / Quadratic reciprocity / Abstract algebra / Mathematics / Number theory

Zentralblatt MATH Database 1931 – 2011 c 2011 European Mathematical Society, FIZ Karlsruhe & Springer-Verlag Zbl[removed]Berndt, Bruce C.; Evans, Ronald J.; Williams, Kenneth S.

Add to Reading List

Source URL: www.math.ucsd.edu

Language: English - Date: 2011-05-17 04:39:42
282Theoretical physics / Differential geometry / Analytic number theory / K3 surface / Modular form / Calabi–Yau manifold / Orbifold / Mathematical analysis / Geometry / String theory

Max Planck Institut f¨ur Mathematik Bonn Mathematische Arbeitstagung 2005 Talk: Black Holes and Arithmetic Gregory W. Moore (Rutgers University) 11. Juni 2005

Add to Reading List

Source URL: www.physics.rutgers.edu

Language: English - Date: 2007-05-23 08:08:02
283Cyclotomic fields / Modular arithmetic / Quadratic residue / Number theorists / Jacobi sum / Carl Friedrich Gauss / Gauss sum / Disquisitiones Arithmeticae / Quadratic reciprocity / Mathematics / Abstract algebra / Number theory

Review: [untitled] Author(s): Peter Cass Reviewed work(s): Gauss and Jacobi Sums by Bruce C. Berndt ; Ronald J. Evans ; Kenneth S. Williams Source: The Mathematical Gazette, Vol. 83, No[removed]Jul., 1999), pp[removed]Pub

Add to Reading List

Source URL: www.math.ucsd.edu

Language: English - Date: 2009-03-17 01:59:39
284Modular arithmetic / WRc

Microsoft Word - GeneralConditions_of_Trade_2011.doc

Add to Reading List

Source URL: www.pmodwrc.ch

Language: English - Date: 2011-03-02 04:22:04
285Modular arithmetic / Combinatorics / Mathematics / Integer sequences / Number theory

Sci. China Math[removed]), no. 12, 2509–2535. SUPER CONGRUENCES AND EULER NUMBERS Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing[removed], People’s Republic of China

Add to Reading List

Source URL: math.nju.edu.cn

Language: English - Date: 2014-06-05 01:00:48
286Modular arithmetic / Public-key cryptography / Euclidean algorithm / Merkle–Hellman knapsack cryptosystem / Linear congruence theorem / Quadratic residue / Affine cipher / Classical cipher / Cryptography / Mathematics / Number theory

A Comment on \A New Public{Key Cipher System Based Upon the Diophantine Equations" S.R. Blackburn, S. Murphyyand K.G. Patersonz Information Security Group, Royal Holloway, University of London, Surrey TW20 0EX, U.K.

Add to Reading List

Source URL: www.isg.rhul.ac.uk

Language: English - Date: 2005-11-30 04:39:34
287Covering system / Modular arithmetic / Residue / Mathematics / Number theory

COVERS OF Z WITH k ≤ 10 RESIDUE CLASSES §0. Introduction For a ∈ Z and n ∈ Z+ let a(n) stand for the residue class a + nZ = {x ∈ Z : x ≡ a (mod n)}. A finite system

Add to Reading List

Source URL: math.nju.edu.cn

Language: English - Date: 2014-06-05 01:00:41
288Mathematical series / Modular arithmetic / Integer sequences

PROBLEM OF THE WEEK Solution of Problem No. 1 (Fall 2013 Series) Problem: Let an > 0, n ≥ 0. Call k “good” if k ≥ 1 and ak > Show

Add to Reading List

Source URL: www.math.purdue.edu

Language: English - Date: 2013-09-09 09:48:51
289Modular arithmetic / Quadratic residue / Mathematics

Multiplicative properties of sets of residues C. Pomerance (Hanover) and A. Schinzel (Warszawa) Abstract: Given a natural number n, we ask whether every set of residues mod n of cardinality at least n/2 contains elements

Add to Reading List

Source URL: www.math.dartmouth.edu

Language: English - Date: 2011-04-06 17:34:07
290Group theory / Logarithms / Finite fields / Analytic number theory / Modular arithmetic / Discrete logarithm / XTR / Index calculus algorithm / Cyclic group / Abstract algebra / Mathematics / Algebra

ELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS Carl Pomerance Given a cyclic group G with generator g, and given an element t in G, the discrete logarithm problem is that of computing an integer l with g l = t. The problem o

Add to Reading List

Source URL: www.math.dartmouth.edu

Language: English - Date: 2007-04-10 16:50:22
UPDATE